
Chapter 5 + ϵ

Derivatives for Scientific Computing

Outline

• Summary of different types of differentiation

– Symbolic differentiation

– Numerical differentiation, a.k.a. finite-differences

– Automatic differentiation (AD)

• Introduction to forward-mode AD with dual numbers

• Exercises in MATLAB1

Introduction

The derivative is a ubiquitous tool in computation, optimization, and data science. This
lesson is designed to introduce you to the concept of automatic differentiation, which is an
algorithmic technique for calculating the derivatives of functions. The lesson will begin
with an overview of symbolic differentiation and finite differences before introducing au-
tomatic differentiation. The lesson will then cover the use of dual numbers for automatic
differentiation and will explore other forward-mode and reverse-mode methods.

Exercise 0.1: First exercise

Draw a word cloud of concepts related to “differentiation.” Hint: Try to list some
definitions, notations, methods, uses, etc. . .

1https://github.com/williamjsdavis/SIO112-Derivatives

1



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 2

ϵ.1 Types of Differentiation

Differentiation is a fundamental operation in calculus that is used to find the rate at
which a function changes. The derivative of a function at a particular point is defined as
the slope of the tangent line to the curve at that point. In mathematical notation, the
derivative of a function f(x) at a point x is denoted as f ′(x).

ϵ.1.1 Symbolic Differentiation

Symbolic differentiation is a technique used to find the derivative of a function using
algebraic manipulation. This method involves applying a set of predefined rules to the
algebraic expression of a function to obtain its derivative. This can be done by a human
following rules you learnt in calculus classes (often called “manual differentiation”), or by
a computer algebra system (CAS).

Exercise 1.1: Symbolic methods

What are some differentiation methods or rules you’ve heard of, or used? Have you
used any computer algebra system? Add these to your word cloud.

While symbolic differentiation is exact, it can’t handle any function, and can become
computationally expensive for complicated functions.

Exercise 1.2: Symbolic examples

Symbolically differentiate (by hand, or use a CASa) the following functions:

f1(x) = 4x3 + 2x− 100

f2(x) = sin(x)

f3(x) = abs(x)

f4(x) = s4,where s1 = x, and sn+1 = 4sn(1− sn)

aE.g., use https://www.wolframalpha.com/

What did you find? What kind of “object” does symbolic differentiation return? Take
note of this.

ϵ.1.2 Numerical Differentiation

Numerical Differentiation—commonly known as “finite differences”—is a numerical method
used to approximate the derivative of a function by calculating the difference between



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 3

two function values. This method involves computing the function at two points that
are close to each other, and then dividing the difference in the function values by the
difference in the points.

df

dx
≈ f(x+∆x)− f(x)

∆x
. (ϵ.1)

While finite differences is easy to implement, it can be less accurate than symbolic
differentiation, and the choice of step size can significantly affect the results.

Numerical Differentiation in MATLAB

Let’s do some examples in MATLAB. If you want hints, look at the file on github2:
section1.m.

Exercise 1.3: Finite difference example

Use finite differences in MATLAB to evaluate the derivatives of

f(x) = sin(x)

in the range x ∈ [0, 1].
Make a plot of the true derivative and overlay the finite difference output. Try

changing ∆x and see what happens.

Finite differences are often used in solving partial differential equations. Why do you
think this is? What kind of “object” does numerical differentiation return? Take note of
this.

Exercise 1.4: Finite difference errors

Repeat exercise 1.3 but only evaluate the derivative of f at a single point, say
x∗ = 0.55. Calculate the error

E(∆x) =
∣∣∣f ′(x∗)− f̃ ′(x∗,∆x)

∣∣∣
where f̃ ′(x∗,∆x) is your finite difference at x∗ using step size ∆x. Repeat this
calculation for a range of ∆x values, and make a plot of E(∆x).

What did you find? Is this what you expected? Why do you think this is happening?
2https://github.com/williamjsdavis/SIO112-Derivatives



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 4

ϵ.1.3 Symbolic vs. Numerical Differentiation

Symbolic differentiation is exact but it can’t handle every function. Manually computing
derivatives by hand can be time consuming and prone to error, and CAS methods can
become computationally expensive for complex functions. Finite differences is easy to
implement but is an approximation; the choice of step size can significantly affect the
results. Perhaps there is another method for differentiation?

ϵ.2 Introduction to Automatic Differentiation

Automatic differentiation is a set of numerical methods used to compute derivatives
through accumulation of values during code execution to generate numerical derivative
evaluations rather than derivative expressions. It is also known as “algorithmic differenti-
ation” or “autodiff.” Automatic differentiation is more accurate than finite differences and
usually faster than symbolic differentiation. Automatic differentiation can be performed
using forward-mode or reverse-mode. In forward-mode, the derivative is computed by
propagating the function evaluation and derivative information from the input to the
output, while in reverse-mode, the derivative is computed by propagating the deriva-
tive information from the output to the input. Today, we will make a first foray into
forward-mode automatic differentiation by using a technique called “dual numbers.”

ϵ.2.1 An Analogous Introduction: Complex Numbers

Recall complex numbers, which mathematical extension of the real numbers. A complex
number z is written in the form

z = a+ bi,

where a and b are real numbers, and i is the imaginary unit, which satisfies the equation
i2 = −1. In common terminology, a is the “real” part, and b is the “imaginary” part.
These are indicated with the functions Re(◦) and Im(◦),

Re(a+ bi) = a,

Im(a+ bi) = b.

The important part here is that complex numbers are still numbers, they just have
different rules (and therefore applications) than real numbers.

Exercise 2.1: In your own time: Properties of complex numbers

Verify that complex numbers form a mathematical structure called a “field.” I.e.,
show that the following properties hold true:

• Associativity of addition and multiplication,



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 5

• Commutativity of addition and multiplication,

• There exist distinct additive and multiplicative identities,

• There exists an additive inverse for every element,

• There exists a multiplicative inverse for every element (except for the additive
identity).

ϵ.2.2 Introducing Dual Numbers

Dual numbers are a different mathematical extension of the real numbers.3 Like complex
numbers, they have different rules than real numbers. These different rules will allow us
to use them to calculate derivatives.

Dual numbers consist of a real part and a dual part. A dual number z can be
represented as

z = a+ bϵ,

where a and b are real numbers, and ϵ is the “nilpotent” unit, which satisfies the rules
ϵ2 = 0 and ϵ ̸= 0. In common terminology, a is the “real” or “standard” part, and b is the
“infinitesimal” part. These are indicated with the functions St(◦) and In(◦),

St(a+ bϵ) = a,

In(a+ bϵ) = b.

Exercise 2.2: In your own time: Properties of dual numbers

Investigate what rules in Exercise 2.2 hold true for dual numbers, and which rules
are not held.

Dual numbers have some weird properties, which turn out to be useful for differenti-
ation. Let’s see what happens when we put dual numbers into the function

f(z) = z2.

Try evaluating the function at

z = 1 + ϵ,

z = 4 + ϵ,

z = 10 + ϵ,

3They have a weird history, which is intertwined with nonstandard analysis, the creation of calculus,
and “hyperreal” numbers, https://en.wikipedia.org/wiki/Hyperreal_number.



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 6

and look at the standard and infinitesimal parts.
Let’s try something more complicated,

f(z) = z2 + 2z + 1,

evaluated at z = 2+ϵ. The real part of the result corresponds to the value of the function
at x = 2, while the infinitesimal part corresponds to the derivative of the function at
x = 2, which is 6. The reason for this behaviour can be identified by looking at a Taylor
series of an arbitrary function f ,

f(a+ bϵ) =
∞∑
n=0

f (n)(a)bnϵn

n!
= f(a) + bf ′(a)ϵ.

By computing functions over the dual numbers and examining the coefficient of ϵ in
the result, we can “automatically” compute the derivative of the function. Note that
we only get the derivative at the evaluation point! Working with symbols on pen
and paper is all fun, but we can implement this in code too!

ϵ.2.3 Automatic differentiation in MATLAB

Unfortunately, MATLAB isn’t the most flexible language for implementing dual numbers.4

Instead, we can represent dual numbers using 2× 2 matrices,5

Use the following functions:

z = a+ bϵ ≡
(
a b
0 a

)
.

1 function dual = Dual(a,b)
2 %Constructs a dual number , z = a + be
3 dual = [a,b;0,a];
4 end

1 function real_part = st(z)
2 %Gets the standard , or real , part of a dual number , z = a + be -> a
3 real_part = z(1,1);
4 end

1 function infinitesimal_part = in(z)
2 %Gets the infinitesimal part of a dual number , z = a + be -> b
3 infinitesimal_part = z(1,2);
4 end

Let’s do some examples. If you want hints, look at the file on github6: section2.m.

4Typically you need to be able to define custom classes/structs, and write rules for operator over-
loading. MATLAB can do some of this, but it’s messy...

5In your own time, think about why this is possible.
6https://github.com/williamjsdavis/SIO112-Derivatives



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 7

Exercise 2.3: First dual number experiment

Use your MATLAB implementation of dual numbers to calculate the derivative of
f(x) = x2 at x = 5. Remember, you’ll have to evaluate the function with the dual
number z = 5 + ϵ, and then extract the infinitesimal part. Repeat this calculation
at other evaluation points.

Exercise 2.4: Another dual number experiment

Repeat Exercise 2.3 for function f1(x) = 4x3 + 2x− 100 in Exercise 1.2. Use your
MATLAB implementation of dual numbers to calculate the derivative at x = 1.

Exercise 2.5: Another dual number experiment

Repeat Exercise 2.3 for function

f4(x) = s4,where s1 = x, and sn+1 = 4sn(1− sn)

in Exercise 1.2. Use your MATLAB implementation of dual numbers to calculate the
derivative at x = 1.01.

If we have time, If you want hints, we can look at demonstration1.m on the github.7

ϵ.3 Automatic Differentiation: The Big Picture

Put simply, automatic differentiation turns function evaluation into derivative evaluation
(see Figure ϵ.3 for a summary). Dual numbers provide one way of implementing forward-
mode automatic differentiation. Forward-mode is preferable for functions of the form
f : Rn → Rm with n ≪ m. For functions with n ≫ m (for example, in neural networks),
a method called “reverse-mode” is preferred. It is beyond the scope of this lesson, but
interested readers can read the paper Baydin et al. (2018) for more details.

References

Baydin, Atilim Gunes et al. (2018). “Automatic differentiation in machine learning: a
survey”. In: Journal of Marchine Learning Research 18, pp. 1–43.

7https://github.com/williamjsdavis/SIO112-Derivatives



CHAPTER 5 + ϵ. DERIVATIVES FOR SCIENTIFIC COMPUTING 8

Figure ϵ.1: From (Baydin et al., 2018).


