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Introduction

In the physical sciences, governing equations and physical phenomena are often described
by differential equations. However, we often need to consider systems which are driven
by rapid, fast fluctuations that appear to act “randomly.” To make this extension, I will
informally introduce stochastic differential equations. The estimation—or inversion—of
SDE model equations from empirical data is a developing field, with the main pioneering
paper being published in 1998 (Siegert, Friedrich, and Peinke, 1998). I will attempt to
show some simple results and examples from this field.!

While this lesson aims to provide an introduction to SDEs and SDE inversion methods, I can point
the interested student to various resources for further reading. Gardiner et al. (1985) provides a superb
introduction to the use of stochastic processes in science fields, and is a great book to learn from.
A natural extension from there is Nicolaas Godfried Van Kampen (1992), which covers more detailed
examples. For a more mathematically rigorous approach, Evans (2012) builds up the field from measure



CHAPTER w. INVERSION METHODS FOR SDES 2

w.1l Ordinary Differential Equations

To introduce stochastic differential equations, I start from first-order, ordinary differential
equations. Such systems are written like

d

%X(t) = f(X(t)), (w.1)

where X () is the variable of interest, ¢ is time, and f(X (¢)) is some deterministic function
that models how the current state of the system effects the rate of change of X(t).
Additional dimension can also be added to the system, forming a system of ODEs.2 An
ODE of this form has a solution

X(t) = Xo Jr/o f(X(s)) ds, (w.2)

with some initial condition X (¢t = 0) = X. As long as the function f(o) is Riemann-
integrable, a unique solution of the integral will exist. When ODEs are used to describe
the evolution of a system with time, it is often called a dynamical system (e.g., Strogatz,
2018).

Exercise 1.1: Examples of ODE applications

Draw a spider diagram of fields and applications in Earth Sciences (or other areas
in physical sciences) that rely on (systems of) differential equations.

w.2 Stochastic Differential Equations

With ODEs as a starting point, I now introduce a precursor to stochastic differential
equations (SDEs).

w.2.1 Langevin Equations

Start with previous physical motivation, with a system where the rate of change of a
quantity is determined by some function of the state of the system, i.e. equation (w.1).
Consider the situation where the deterministic response compounded with an amount
of some rapidly and irregularly fluctuating “random noise”, £(¢). The amplitude of this
fluctuating term can be set by the scalar quantity, . The differential equation is now
written as

theoretical fundamentals, and Pavliotis (2014) continues this with more mathematical rigor. Risken
(1996) is a great reference which gives a thorough treatment not just of the Fokker-Planck equation,
but many other details of the field with physics based examples. For a collection of definitions, proofs,
references, and inversion methods, students are referred to Rudolf Friedrich, Joachim Peinke, et al.
(2011).

2We consider autonomous systems, although often non-autonomous systems can be made autonomous
by introducing additional variables (e.g., Strogatz, 2018).
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d
SX(1) = F(X(1) +0£(0). (3)
An equation of this form is referred to as a Langevin equation, after Langevin’s rein-
terpretation of Brownian motion (Langevin, 1908). They are characterised by having a
fixed strength of noise fluctuations, indicated here as o. At this point, £(¢) has not been
defined yet, so it’s not clear how to interpret this equation. Similarly to equation (w.2),

the integral form of (w.3) can be written as

t t
X(t) = X0+/0 f(X(s)) ds—{—a/o &(s) ds, (w.4)

with some initial condition X (¢t = 0) = Xy. To concentrate on the new part that is
associated with the random component, the unscaled process can be defined as

Y(t) = /O £(s) ds. (w.5)

This equation is the integral of the “random noise” £(t), which can be conceptually
thought of as the the derivative of process Y (),

dy
=), (w6)
To progress further, certain choices for the form of £(¢) must be made. These choices
will be based on assumptions for the “random noise” in the physical system being modeled.
One common assumption is that Y (¢) (and as a result, X (¢)) is a continuous function of
time. This is equivalent to assuming that the process contains no discontinuous jumps. It
can be shown that only the first two statistical moments of £(¢) need to be defined (Risken,
1996). The first moment (i.e. the mean) can be defined to vanish, because, without loss
of generality, any systematic bias in £(¢) can be absorbed into the definition of f(o). As
such,

E((t) = 0. (w.7)

For the second moment, one might want to consider the case where each instance of
this noise is completely uncorrelated from all other values. Put another way, for all
non-identical times, t # ¢/, the noise £(t) and £(t') are statistically independent,

E(E®)&(t) =a(t — 1), (w-8)
where 6(0) is the Dirac delta function. These choices for the form of random fluctuations
represented in £(t) are referred to as Gaussian white noise. The label “Gaussian” refers
to the fact that Y (¢) is Gaussian distributed (which is a result of its assumed continuity),
and “white” refers to the flat spectral content of this process, akin to the spectra of white
light.

These choices give some familiar statistical properties to the integral form of this
noise, Y (¢). Firstly, the expectation of all increments of Y (¢) vanish
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t
E(Y(t) = Y(s)) :/ E(&(t)) dt’ = 0. (w.9)

Furthermore, the expectation of the square of the increments gives a familiar result

t t
By -ve)) = [ a [ o Bewien)

t t
= / dt’ / dat’ 5t — ")
S S

=t—s, (w.10)

for t > s. It turns out that (w.9) and (w.10) show the same properties as a mathematical
object called the Wiener process, W (t). This process, W(t), is defined as having the
following properties:

1. Sample paths W (t) are continuous,

2. Increments are Gaussian distributed, W (t + At) — W(t) ~ N (0, At) for all ¢ and
At > 0,

3. Furthermore, these increments are independent for all times, i.e. values of W (t +
At) — W (t) are independent from all past values of W (t'), where t' < t.

We shall now throw rigor joyously to the wind and define

W(t) = /0 dsé(s), (w.11)
and

AW, = £(t)dt. (w.12)

Thus, we interpret integral (w.4) as

t t
X(t):Xo+/0 F(X(s)) ds+/0 dW (s), (w.13)

Here, the first integral is identical to (w.2), whereas the second integral is interpreted
as a Stieltjes integral with respect to a stochastic sample function

AW (t) = W(t +dt) — W(t) = £(t)dt. (w.14)

The theory of how to take an integral with respect to a stochastic process is developed
in the field of Ito calculus (Pavliotis, 2014). However it turns out that for some simple
SDEs—such as Langevin equations—solutions of X (¢) can be found without having to
consider how this integral is interpreted.?

*Mathematicians will express stochastic integrals (w.13) in the form dX = f(X(t))dt + dW, even
though objects like dX don’t make much sense on their own.
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w.2.2 Stochastic Differential Equations

A more general version of the Langevin equation is the stochastic differential equation,
where the amplitude of the noise is dependent on the state

dX

= F(X(1) +g(X(#)&(). (w.15)
Here, f(z) and g(x) and are called the drift and diffusion functions, respectively (Risken,
1996). Equation (w.15) is interpreted as a stochastic integral equation

t

X(t) = Xo —|—/0 F(X(s)) ds—l—/o g(X(s)) dW (s). (w.16)

To compute the solution to this, one must consider defining the stochastic integral

/ g(X(s)) dW (s) (w.17)

to

as a kind of Reimann-Stieltjes integral. Namely, the interval in time [0, ¢] is partitioned
into n subintervals

to <t <ty <..th<t, (w.18)

with intermediate points 7; such that

ti—l < Ti < ti. (w.19)

Then the solution of the stochastic integral (w.17) is defined as the limit of the partial
sums

n

[ a(x() awis) = tm 3" g(x(r) AW (.20)

to i=1

where AW, is an increment in a Wiener process

AW; = W(t;) — W (ti_1). (w.21)

In regular Reimann-Stieltjes integration, equations similar to (w.20) converge to the same
result that does not depend on choices of the intermediate points 7;. However this is not
the case for stochastic integrals.

w.2.3 Itd vs. Stratonovich

The choice of evaluation points 7; has direct consequences on the interpretation an result
of (w.20). This is generally true for stochastic integrals where the integrand function
g(o) is non-constant. In principle, any choice for the intermediate points 7; can be taken.
However there are two options that are commonly used in practice: evaluation at the start
of partition points t;; and evaluation at the midpoints of partitions. These two choices
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correspond to the Itd6 and Stratonovich interpretations, respectively (e.g., Nicolaas G
Van Kampen, 1981; Mannella and McClintock, 2012). For It6 calculus (It6, 1944; Ito,
1951), the interpretation of (w.20) becomes

t n

/ 9(X(s)) dW(s) = T}i_}HOloZQ(X(ti—l)) [W(ti) = W(ti-1)]. (w.22)
to i=1

The It6 interpretation provides more mathematically straightforward functionality (and
easy numerical implementations), but with the complication of alterations to the chain
rule. As such, it is most often used in mathematical proofs, finance, and numerical
simulations.* In the following material, the integral is interpreted in the Ito sense, for

computational ease.

Exercise 2.1: Examples of SDE applications

Extend your spider diagram from Exercise 1.1 to of fields and applications in Earth
Sciences (or other areas in physical sciences) that you think SDEs would be appli-
cable.

w.3 Numerical Solution of Stochastic Differential Equations

Like ODEs and PDEs, the vast majority of SDEs cannot be solved by analytic meth-
ods. Instead, solutions are approximated through the application of numerical methods
(Kloeden and Platen, 2013). Consider a general, scalar SDE of the form

dX

= (X)) +g(XW)E) (w.23)
where £(t) is Gaussian white noise. An initial condition at X (¢ = 0) must be provided,
which can either be deterministic or a random variable. We seek an approximate solution
on the interval [0, 7. For this, both the sampling of the abscissa and the measure on the
ordinates have to be specified.

w.3.1 Conditions for Numerical Solutions
First, the interval [0, 7] is discretized to N points, specifying sample points at times t;.
This is usually accomplished with regular grid and a constant step size, At,

X (t;) := X (1At), (w.24)
with ¢ =0,1,...,N and T = NAt.

4An alternative to the It6 interpretation is to take the Stratonovich interpretation (R. Stratonovich,
1966; R. L. Stratonovich, 1967), and evaluate g(o) at midpoints. This interpretation is more favoured
in the physical sciences, as it preserves the chain rule, as well as being a more natural model for real
noise. However in practice, the choice is a decision in modeling, as connecting the two interpretations is
possible.
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Strong Solutions

Next, a measure of “approximate solution” must be defined. This corresponds to defining
the conditions of convergence. We consider pathwise convergence, also referred to as
strong convergence, which is related to the L' norm. If X At(t) is an approximate solution
of X (t) with sampling At, the pathwise error at some point ¢; is defined as

Error (At) = E | X (t;) — Xa¢(ti)] . (w.25)
From this, strong convergence is defined as®

lim E At) = 0. .26
Jim rrors (At) (w.26)

w.3.2 The Euler-Maruyama Method

One of the simplest numerical solutions for a SDE of the form (w.23) an extension of
the explicit Euler method (e.g., Butcher, 2016). The Euler-Maruyama (EM) method
(Maruyama, 1954), can be expressed as

X(tiy1) = X (t:) + (X (t:) At + g(X (t:)) AW (£2), (w.27)

where AW (t;) = W (t;+1) — W(t;) are “Brownian increments”. These increments are, by
the definition of the Wiener process, independent and identically distributed Gaussian
random variables with mean zero and variance At. It is possible to rewrite (w.27) as

X(tip1) = X(t:) + f(X () At + g(X (t:)) VALG, (w.28)

where ¢ ~ N (0,1). This method provides a numerical solution for (w.23), given a “noise
sample” of (;. It can be shown that this method does strongly converge in the limit
At — 0.6

w.3.3 Exercise: Using the Euler-Maruyama Method

Exercise 3.1: Using the Euler-Maruyama Method (example3_1.m)

Use the given MATLAB implementation of the Euler-Maruyama method to integrate
the following “Ornstein-Uhlenbeck” (OU) SDE, % = —X(t) + &(t). The result
should look something like Fig. w.l. Try integrating the solution again and see
what happens (it should look like Fig. w.3).

5We can also define the order of strong convergence, «, is defined when there exists a positive constant
C such that F ’X(ti) — XAt(ti) < CAt?, for all i.

5The strong order of convergence o = % This compares with the deterministic Euler’s method, which
has a strong convergence of a = 1.
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Exercise 3.2: Other SDEs (example3_2.m)

Use the Euler-Maruyama method to integrate an SDE of your own choice. Choose
something like

filz) = 42 + 22 — 100, gi(x) =1,

1 1
fQ(IL’) = —2r+ 57 92(37) =5+ 7"1:27
2 4
1
f3(x) = 311, gg(l‘) = 5$7

or come up with your own example! Congratulations, you are now qualified for a
quantitative finance role.

Use the following function.”
1 function [t,x] = euler_maruyama(f,g,dt,tend,x0)
2 % Euler -Maruyama method
3t = 0:dt:tend;
1 n = length(t);
5 x = zeros(size(t));
6 x(1) = x0;
7 for i = 2:n
8 x(i) = x(i-1) + £(x(i-1))*dt + g(x(i-1))*sqrt(dt)*randn;
9 end
10 end
2 L
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Figure w.1: A realization of an OU process, X (), given in Example 3.1.

"Also found in github.com/williamjsdavis/SI0230-Stochastic
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w.4 The Inverse Problem: Estimating Stochastic Differen-
tial Equations from Empirical Data

In many physical applications, it may be possible to model time time-variations of a
system as a stochastic process, or more specifically, as a stochastic differential equation.
From this outset, there are two options available. One option is to approach the system
from first principles, and write down the fundamental mechanisms and conservation laws
that will combine together and form governing equations. If one assumes that some
parts of this system are modeled with fast-varying, random variables, then the governing
equations will be SDEs. Such a hypotheses can then be verified against empirical data.
On the other hand, if the fundamental mechanisms are not well known or inordinately
complex, then a “top-down” approach can be attempted. In this case one must start
with the empirical data, and attempt to infer what SDE could have plausibly produced
it. This approach then becomes the process of fitting the SDE to time-series data, and
can be thought of as an inverse problem. A schematic of this idea is shown in Fig. w.2.

Forward

Inverse

Figure w.2: A schematic of stochastic forward and inverse modeling, showing the rela-
tionship between the model objects, (e.g. drift and noise functions f(z), g(z), etc...)
and data objects (e.g. time-series observations, X (t)).

The history of this approach has largely been motivated financial modeling, as well as
examples in the physical sciences. For the financial research, most inference methods are
parametric, featuring rigorous proofs relating to specific financial models (Bishwal, 2007;
Sgrensen, 2012). For the physical sciences, non-parametric inference methods are more
common, possibly due to the lack of domain prior knowledge.® In the statistical literature,
the process of reconstructing an SDE from an SDE realization is called “estimation”
or “inference,” as the “true” stochastic models do actually exist. Unfortunately, this
terminology is often incorrectly repeated in the physical sciences, where there is no “true”

81n these cases rigorous proofs for many of these estimation methods are absent. Many methods have
only been demonstrated to work numerically, for a small set of empirical examples.
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stochastic model. Instead, stochastic models are “fitted” to empirical data. In this section
I choose to keep the “estimate” terminology, as it more accurately reflects the literature
[ am summarizing. However, when empirical data is concerned, I will exchange this verb
for “fit.”

Consider a scalar SDE of the form

dX
with an initial condition X (¢ = 0) = Xy. Here, for now, £(¢) is uncorrelated white noise,
Le. (£(t)) = 0and (£()E(t)) = 6(t—t'). From this process, as discrete set of observations

of X (t) are made,

(X)) = X (1) X (t2); .5 X(tn)}- (.30)

The task is to estimate functions f(x) and g(z), either parametrically or non-parametrically.

An important point to illustrate is that to estimate the drift and noise functions, a
“guess and check” forward modeling approach will not be successful. The key is that
there is no way to reproduce the random state of £(¢). Even if one assumes the drift and
noise functions have been, by chance, estimated correctly, then a realization of (w.29)
with the estimated functions will produce a solution of X (¢) that diverges from the data.
Conceptually, this can be thought of having a different “random seed”. An example of
this is shown in Fig. w.3. In probability theory terminology, such a “guess and check”
method will almost surely never succeed.

In order to robustly estimate the original drift and noise functions of a SDE, or alter-
natively fit the drift and noise functions of a proposed model to an empirical time-series
observation, a number of statistical methods have been developed. In the physical sci-
ences, these methods can broadly be grouped into: “moment based estimation” methods;
“transition probability estimation” methods; and others.

w.5 Moments Based Estimation

The most common technique present in the literature is one based on analysis of con-
ditional moments. The basic theory of this approach relates to something called the
Fokker-Planck equation: a partial differential equation describing the time-evolution of
the probability density function, P(x,t), written here as

2
%1; _ ‘a% (DD (e, )P, 1)) + %(D@ (2.0)P(x,1)). (w.31)

The coefficients DM (x,t) and D@ (z,t) are the first two Kramers-Moyal coefficients
(Kramers, 1940; Moyal, 1949; Risken, 1996). These coefficients are related back to the
original SDE (w.29) by?

9The factor of 2 in the expression for the diffusion function originates from the Taylor series expansion
the Master equation (Risken, 1996). In some references, the noise £(t) in (w.29) is defined to have
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Figure w.3: A realization of two OU processes, X (¢,w), indicated in black. This realiza-
tion uses a sample from probability space w € ). Superimposed is another realization,
X (t,w), indicated in gray. This process has the same drift and noise functions and initial
condition, but with a different sample of probability space @ € €.

F(X@),t) = DW(z,1), (w.32)
g(X(t),t) = /2DP)(x, 1). (w.33)

These Kramers-Moyal coefficients can be accessed by taking moments of transition prob-
ability densities (Risken, 1996, e.g., )

D™ (2,4) = lim —M®™ (z,7),  n=1,2, (w.34)

=0 nlT
for, where the quantities
o0

M (x,7) = / [/ — J:] "p(z’ t 4 7|z, t) do, n=1,2, (w.35)

—0o0
are the conditional moments. Invoking (or assuming) the edgodicity of the process, the
integral over possible states 2’ can be exchanged with a time-average. Thus, integrals
(w.35) can be interpreted as expectations

autocorrelation (£(t)€(t')) = 28(t — t'). This convention results in the relation g(X(t),t) = v/D® (x,1)
for the diffusion function.
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M™(z,7) = E(X(t+71) - X(t)|X(t) = z). (w.36)

This expression can be readily calculated numerically, from a sample of X (¢), allowing for
a path towards fitting drift and noise functions to empirical data. Although the drift and
noise functions are being fitted, these functions are frequently referred to as “Kramers-
Moyal coefficients”. This is because, often, one cannot a priori assume that the process
can be exclusively be defined by just the drift and noise functions: a greater number
of Kramers-Moyal coefficients may be needed. This approach—coming at the drift and
noise functions of a Langevin-like stochastic process from estimates of the conditional
moments—is sometimes called “Kramers-Moyal analysis”.

Broadly, this methodology can be thought of as an alteration to the naive “guess and
check” inverse methodology of Fig. w.2. A schematic of this is shown in Fig. w.4. This
relies on the hope that both the forward strong solution and the statistical map are in
a sense injective, i.e. objects in the destination sets cannot come from many objects in
the origin sets.

Forward

Inverse Map

Figure w.4: A new schematic of stochastic inference, showing the relationship between
the model objects, (e.g. drift and noise functions f(x), g(z), etc...), intermediate statis-
tic objects (e.g. conditional moments, M) (z, 7)), and data objects (e.g. time-series
observations, X (¢)). The line from model to data represents forward modeling, the line
from data to statistics represents functional mapping, and the line from statistics model
represents inverse modeling.

w.5.1 Direct Estimation and Histogram Based Regression

The field of moment-based estimation techniques was started by Siegert, Friedrich, and
Peinke (1998). In that study, the authors considered a set of numerical example SDEs
of the form (w.29), that were sampled at a regular and small time-interval. State condi-
tioning in (w.36) was performed with binning. At a evaluation point with state z = x;
and time-shift 7 = 7;, (w.36) is evaluated with
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g: I(X(tk) (S B(:E)) [X(tk + Tj) — X(tk)]n
MM (z,7) = =L

- , (w.37)
kzzjll(X(tk) € B(z))

where I (o) is the indicator function, and binning is indicated with the half closed interval
B(z) := [z — 3by,x + 3b,), where z is the desired evaluation point, and b, is the width
of the bin. This approach is similar to the regressogram method of Tukey (1961), and is
referred to as histogram based regression. With the state conditioning on the conditional
moments set, the limit in (w.34) is approximated by taking a small 7 expansion

- 1
D™ (z) = EMW(:U,T) +0(r3), n=12 (w.38)

This approximation appears to be valid when the timestep 7 is much smaller than the
characteristic timescale of the system 7eg (Rudolf Friedrich, Joachim Peinke, et al., 2011).
From this assumption, the moments are evaluated at the smallest available timestep,
7 = At. As such, the estimates of the Kramers-Moyal coefficients, D™ (x), become
D™ (z) ~ L (x,At), n=1,2. (w.39)
nlAt
This approach has been called “direct estimation”. We will use this approach in MATLAB.

w.6 MATLAB examples

Exercise 6.1: Direct estimation, OU (example6_1.m)

Use your OU data from Example 3.1, and estimate D) (x) at x = —0.5. Repeat
this for a range of points in x € [—1,1]. The result should look like Fig. w.5. Try
changing At in the integration. How does this alter the drift and noise functions

Exercise 6.2: Direct estimation, other SDEs

Change the drift and noise functions in your Euler-Maruyama simulation to some-
thing from Example 3.2, and create a new time-series dataset. Now repeat the
estimation in Example 6.1.
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Exercise 6.3: Direct estimation, empirical data (example6_3.m)

I have included a file, example_data.mat, which contains an empirical data-set.
Use direct estimation to estimate what likely drift and noise functions generated
this data.

15 Drift function Diffusion function
—True 0.8/ |
11 * Estimate|| LT VL FV VEOSOOF POPY PV 2

Figure w.5: Drift and noise functions estimated in Example 6.1.

w.7 Further Topics

Considerations of Direct Estimation

There are many considerations to make when using a direct numerical approach in
moments-based estimation. These can be broadly separated into philosophical and im-
plementational details. Philosophical details largely focus on whether the model (w.29)
is an appropriate model for the observed empirical data, X (¢). To list a few:

1. Is the assumption of ergodicity valid?
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2. Is the observed system described by the observable dimensions, or may there be
hidden slow variables that contribute to the dynamics of the system?

3. Similarly to the last point, is the system well described by a first order SDE? Would
an SDE of a higher order (and therefore higher dimension) be a more appropriate
model?

4. Is the system driven by white noise, or is a type of correlated noise present?

5. Can the observed empirical data be well explained by two'® Kramers-Moyal coef-
ficients? This implies that noise that drives the system is Gaussian, and therefore
the process has no discontinuous jumps.

Independent checks may be required to test the validity of these assumptions (e.g., Klein-
hans et al., 2007). For the implementation details, a number of considerations arise:

1. How is the conditional expectation in (w.36) evaluated?
2. How is the limit 7 — 0 in (w.34) performed?

3. Is the sampling of X (t) regular? lL.e. At = At; = tj41 — t;. If not, then it is not
clear how to evaluate (w.36). This can be thought of as conditioning in 7, where a
regular sampling equates to “index-based conditioning”.

When applying moment based fitting to any empirical data, a choice must be made for
each of these options.

Multiple 7 evaluations

Alternate methodologies can be incorporated into the direct estimation scheme. To
attempt to evaluate the limit in (w.34), the moments M (™ (2, 7) can be sampled at many
7 values. An example of these moments are shown in Fig. w.6. By using many 7
samples, more robust estimates of the moments in the limit 7 — 0 can be approached
by considering a range of 7 evaluation points, T = {At,2At, ..., Tmax}, and performing
linear regression (e.g., Rudolf Friedrich, Siegert, et al., 2000; Gottschall and Joachim
Peinke, 2008). For example for the first moment, scaled moments can be separated into
a slope and intercept

~

D) (.
MZ@0m) _ gr s B (w.40)
7j

In this case, the intercepts B; at spatial evaluation points x; are directly the best estimates
scaled moments at 7 = 0.

0Note that in this context, the Pawlua theorem states that the number of Kramers-Moyal coefficients
to describe a system must be either one, two, or infinite (RF Pawula, 1967; Pawula, 1967).
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Figure w.6: Conditional moments scaled by 7, i.e., M™ /7. The labels in the top left plot
that indicate the x conditioning is only shown for the first and last lines. The theoretical
value of the moments in the limit of 7 — 0, predicted by (w.34), are shown as blue and
green lines in the bottom left and bottom right plots, respectively.

Measurement Errors

Another point to consider, related to the appropriateness of the SDE model (w.29),
concerns the presence of measurement noise (or measurement errors). Consider a general
SDE Y (t) that is the combination of some Langevin-type process and measurement noise

%{ — F(X().8) + g (X (8), £)E(8), (w41)
Y () = X () + oC(t), (w-42)

where ((t) is the measurement noise. To estimate Kramers-Moyal coefficients in the pres-
ence of measurement noise, Bottcher et al. (2006) introduced a method to parametrically
fit drift and diffusion functions as well as the amplitude of the measurement noise. This
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method involved estimation and optimisation of the slopes and intercepts of moments at
low 7 shifts, similarly to (w.40). This approach has been expanded in subsequent studies
(e.g., Lind et al., 2010), as well as to non-white measurement noise {(¢) (Bernd Lehle,
2011; Scholz et al., 2017), and in multiple dimensions (Bernd Lehle, 2013).

Correlated Internal Noise

A fundamental assumption of most Kramers-Moyal analysis is that the internal noise
that drives fast scale variations is uncorrelated Gaussian white noise. Consider, instead
of (w.29), a more general process

dX
E = (X(t)7t) +g(X(t),t)77(t), (W43)
where 7(t) is correlated noise, (n(t)n(t")) # o(t — ).
Consider a simple example of a non-white process: exponentially correlated Gaussian

white noise

dn 1

=gt %f(t). (w.44)

where 6 is the characteristic timescale of the driving noise, and £() is the Gaussian white
internal noise. This noise process still has a vanishing mean, but has an autocorrelation

of

() = e, (w.45)

The exponent in this equation indicates that (w.44) has a finite correlation time of 6.
In this case, the traditional direct-estimation method will not work.!! Complicated
estimation methods have been developed to solve this problem Lehle and Peinke (2018).12
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